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NUMERICAL TECHNIQUES IN MATHEMATICAIL PROGRAMMING

by
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Abstrant
:  The application of mumericelly stable matrix decompositions to
i minimization probleme involving linear constrainte is discussed and

shown to be feasible without undue loss of efficiency.
i Part A describes camputation and updating of the product-form
of the IU decomposition of & matrix and shows it can be applied o
solving linear systems at least as efficiently as standard techniques
I using the product-form of the inverse.

Part B discusses orthogonalization via Householder tranasformations,

' with applications to least squares and gqusdratic programming algoritims

based on the principel pivoting method of Cottle and Dantzig.
i Part C applies the singular value decomposition to the nonlinear

least squares problem and discusses related eigenvalue problems.
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introduction

This paper describes the application of numerically stable matrix
decompositions to minimization problems involving linear constraints.
Algorithms for solving such problems are fundamentally techniques for
the solution of selected ayatems of linear equations, snd during the
last fifteen years there has been & major improvement in the understanding
of these and other linear algebraic problems. We show here that methods
which have been analysed by various workers and proven to be nmumerically
stable may be employed in mathematical programming algoritims without
undue loss of efficiency.

Part A describes means for computing and updating the product-form
of the IU decomposition of & matrix. The solution of systems of equations
by this method is shown to be stable and to be at least as efficlent
as standard techniques which use the product-forn of the inverse.

In Pert B we discuss orthogemalization via Householder transformations.
Applications are given to leas-'squares and quadratic programming algorithms
based én the principal pivoting method of Cottle and Dantzig [5 ). For
further applications of stable methods to least squares and quadratic
programuing, reference should be made to the recent work of R. J. Hanson [13]
and of J. Stoer [26] whose algorithms are based on the gradient ﬁrojection
method of J. B. Rosen [24].

In Part C the application of the singular value decompositian to
the nonlinear least sguares problem is discussed, along with related

eigenvalue problems.
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i. IU Decomposition

' A. THE USE OF LU DECOMPOSITION IN EXCHANGE ALGORITHMS
' If 3 isan nx n , nonsingular matrix, there axists a permutation
matrix T , a lower-trisngular matrix I with ones on the diagcnal, and

' "[ D an upper-trianguler matrix U such that
(l-l) WB = IU .

It is possible to choose 7 , L, and U 80 that all elements of L
are bounded in magnitude by unity.

A frequently-used algorithm for camputing this decomposition is
built around Gaussian elimination with row interchanges. It produces

f the matrices 77 and L in an implicit form as shown:

For k = 1,2,...,n-1 in order carry out the following

two steps:

(1.2) Find an element in the k-th column of B , on or below the
diagonal, which has maximal magnitude. Interchange the

k~-th row with the row of the element found.

(1.3) Add an appropriate multiple of the resulting k-th row to each
row below the k-th in order to create zeros below the diagonal

in the k<th column.




Each execution of the first step (1.2), in matrix notation, amounts
to the premultiplication of B by a suitable permutation matrix 1 K °
The following step (1.3) may be regarded as the premultiplication of B

by & matrix l"k of the form

(1.4) " 1

where ISi,k' <1 for each 1 = ktl,..eyn .
By repeating the two steps n-1 times, B is transformed into U .
And st the same time the matrix (L™MN) 1s collected in product form

=1 .
.5) L Ty e Dy

This algorithm requires 2’ /§+0(n2) multiplication/division operations

and again this many addition/subtraction operations. Both U and all

of the g , can e stored in the space which vas originally occupied by B .
» .

An additionsl n locationsare required for the essential information contained

in the _TTlc .

AL o, T b - TR (0 - e e s




2. BExe () rithns

Many algorithme require the solving of a sequence of linear equations

for which exch B(i) differs from its predecessor in only one column.
Examples of such algorithms are: the simplex method, Stiefel's exchange
method for finding a Chebyshev solution to an overdetermmined linear

equation system, and adjacent- path methods for solvins the complementary-

pivot programming problem.
Given that B(O) has a decomposition of the form

e B e A

-1
where U(Q) is upper-triangular, and given that I.(o) has been
stored as a product

-1
(2.3) (O . @), p{O) g0

the initial system of the sequence is readily solved: BSet

-1
and then back-solve the triangular system .
(2.5) - vOx Y

o Y S S
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3. Updating the LU Decomposition

(0)

Let the column r, of B{o) be replaced by the column vector a .
So long as we revise tne ordering of the unkrowns accordingly, we muy
insert a(o) into the last column position, shifting columns i‘o+1
through n of B"O) one position to the left to make room. We will
£1)

crll the result - , and we can eaSily check that it has the

decomposition
’g'l) B\l) = L(J)K(l)
where H(l) is ¢ matrix which ic upper-Hessenberg in its last n -r°+ 1

columns end upper-triangular in its first ro-l columns. That is,

lI(l) has the form

(3.2)

The first ro-l columns of }{(1) are identiga.l with those of U(O) .
The next n-r(> are identical with the last n-ro columns of U(o) .

Y
And the last colum of K'Y 1s the vector L(® a(0) |

H(l) can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves

1)

with the interchanges of pairs of adjacent rows. Thus U< is gotten

-




from H(l) by applying a sequence of simple transformationas: ;
!

(3.3) o LB L)y () () i
-] (] 3
i
where each D) has the form E
| |
: i
f
1 2
(3.4) : 1
' i+1 S_f_l) N
1
1l
1 441

and each ﬂg_l) is elther the identity matrix or the identity with the i-th Y
and i+1-st rows exchanged, the choice being made so that lgf‘)] 1.
The essential information in all of these transformations can be o

i stored in n-r, locations plus an additional n-r_ bits (to indicate
b

the interchanges). If we let




{3.5) L

o e}

then we have achieved the decomposition

(3.6) (D ()

s {1} {1+1) s
The transitioen from B**" <o B for any 1 1s to be made

{
exactly as was the transition from B(O) to B‘l)

Any system of
linear equations involving th. matrix Bh) for any i 1is to be solved

according to the cteps given in (2.4} anmd (2.5).




4. Round-off Considerations

—t  omd omg

For most standard computing machines the errors in the basic

arithmetic operations can be expressed as follows:

p—
5

ft{a + b) = a(l+ el‘) + b(1+ 52)
(h4.1) fila x 1) = ab(l + 53)

f1(e/v) = (a/p)(1 +¢)

where ]cil < ﬁl't . Here B stands for the base of the number system

in which machine arithmetic is carried out and t 1s the number of

significant figures which the machine retains after each operation. The
notation ff(a "op" b) stands for the result of the operation "op" i
upon the two, normal-precision floating-point numbers a and b when
standard floating-point arithmetic is used.

The choice of an IU decomposition for each B(i) and the particular
way in which this decomposition is updated were motivated by the desire
to find e way of solving a sequence of linear equations (2.1) which would
retain a maximum of information from one stage to the next in the sequence
and which would be as little affected by round-off errors as possible.

Under the assumption that machine arithmetic behaves as given in (L.1),

AnAMBa e e e el -

the processes described in Sections 2 and 3 are little affected by

round-off errors. The efficiency of the processes will vary from algorithm

to algorithm, but we will argue in a subsequent section that the processes

—

should cost roughly as much as those based upon product-form inverses

of the B(i) . ,

S ey e
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We will now consider the round-off properties of the basic steps

deseribed in Sections 2 and 3.

The computed solution to the trimgu;ar system of linear equations
(%.1) oWy oy
can be shown, owing to round-off errors, to satisfy a perturbed system
(.3) () + s thx -y

It is shown in Forsythe and Moler [9 ] that

MWas /i) 11
A n(n+1) Al-t
b lu™ < 1.01
(b.1) oy S Tz (ons
i i1
where l|...|| denotes the infinity norm of a matrix, and thus round-off
errors in the back-solution of a triangular system of linear eguations
may be regarded as equivalent to relatively small perturbatious in the

original system.
Similarly, the computed L and U obtained by Gaussian elimination

with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation
(L.5) H+8H=1U0 ,

where Forsythe and Moler show that

(4.6) lal o2t
el

and Wilkinson [28] establishes that p <n . Thus, the computational




| — B o R ——f i L]

process indicated in (3.3) can be regarded as introducing only relatively
emall perturbations in each of the H(L) .

Similar results hold for the initial I Adecamposition (2.2) with
a different bound for p . The reader is referred again to Forsythe
and Moler.

The most frequent computational step in the processes which we have
described is the application of one Gaussian elimination step [ to a

column vector v

(4.7) w="rv= o

The computed vector w satisfies

(4.8) w,=v, for k £
vy - f!(ft(gvi) + VJ)

B+ E)(14 &) + vy(1+ )

<evg vyt 5"1(‘1 *egt slea) + viep -

9
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Thus we may regard the computed vector w as the exact result of a

perturbed transformation

(k.9) w=([+80)v ,

where
: i
(4.10) BT =
Jd o T
F ]
i J
and

(b.12) o = g(e, + £+ 5153)

T = t2 .
Therefore we have

sl lalley + e5+ eqes] + ley]

Y.
®2 S T+ Jel

?

vhere the right-hand side is bounded, sintce |g| <1 , according to

Jorf]

el

Hence, the camputations which we perform using transformetions (4.7) also

(4.13) ptt3 + p1%] < 3.018%F  (say).

introduce relatively small perturbations into the quantities which we manipulate.




It is precisely with regard to such transformatione that we feel
our method of computation, based upon LU decompositions, is superior
to methods based upon the inverses of the matrices B(i) « Such methods

use transformations of the form

1 'ql

. *

(&.14) » T k .

These are applied to each cotum in 3D 4o proause (07

PP o each column in o produce ; or
alternatively, in product-form methods, they are applied to the vector
v(i) to produce the solution to system (2.1). As such, they involve
successive computetions of the form (4.7). Each such computation may be

regarded as satisfying (4.9). But, since the 1 y ey be unrestricted in

magnitude, no bound such as (4.13) can be fixed.

TR N ORI
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5e Efficiencx Considerations

As ve have already pointed out, it requires
(5.1) 2°/3 + o(n?)

multiplication-type operations to produce an initial LU decamposition (2.2).
To produce the product-form inverse of an nxn matrix, on the other

hand, requires

(5.2) no/2 + 0(n?)

operations.
The solution for any system (2.1) must be found according to the IU-

decomposition method by computing
] -1
(5.3) y =1 )

followed by solving

(5.4%) vy =y .

Ol (1)
The application of L to v in {5.3) will require
(5.5) n(o-d)

-1
operations. The application of the remaining transformations in L(i)

will require at most
(5.6) i(n-1)

operations. Solving (5.4) costs




(5.7) alned)

2

cperations, Hence, the cost of (5.3) and (5.4) together ie not greater than .
2 .
(5.8) n“ + i(n-1)

operations, and a reagonable expected figure would be n? + % (n-1) .
On the other Land, computing the solution to (2.1) using the usual
113"
product form of ) requires the application of nti <transformations

of type {4.1h) to v(i) at a cost of

P 2 .
‘..7¢9-) n + in

operations.
If a vector a(l) replaces column re in B(i) s then the

-1
updating of B(i) requires thet the vector

(5.10) 2 - 37O

be computed. This will cost n® + in operatione, as shown in (5.9). Then
e transformation of form (4.14) must be produced from 2 , and this will

bring the total updating cost to
2
(5.11) n“+ (1+1)n .

The corresponding cost for updating the IU decanﬁosition will be not more

than

(5.12) 5;—'11 + i(n~1)

(0™ (1)
operations to find L a » followed by at most ..




n(n+l

operations to reduce H(hl) to U(i+l) and generate the transformations

of type (3.l4) which effect this reduction. This gives a total of at most

(5.1%) ne + i(a-1)

operations, with an expected figure closer to n2+-"2‘- (n-1) .
Hence, in every case the figures for the LU decomposition: (5.18),

(5.8), and (5.1) are smaller than the corresponding figures (5.11), (5.9),

and (5.2) for the product-form inverse method.




——

6. Storage Considerations

All computational steps for the Li-decomposition method may be
organized according to the columns of the matrices B(i) « TFor large
systems of data this permits a two-level memory to be used, with the
high-~speed memory reserved for those columns being actively processed.

The organization of Geussian elimination by columna is well-known,
end it 1s clear how the processes (5.3) may be gimilarly arranged.
Finally, the upper-triangular systems (5.4) can be solved columnwise

as indicated below in the U x k case:

Y1 % Y3 “1k\ Xy /3’1

O Vo Yy Uy M % ¥
(6.1) l =

°© O Uy % (%
0 ] o uu/\xk \yh .

— s o

Bring the y vector and the last column of U into high-speed
memory. Set x) = y,/uu - Set yi =y, -u,x, for i= 3,2,1 .
This leaves us with the following 3 x 3 system:

I Un M W3 (T 61
(6.2) 0 Byp Wzl (X |=|¥3
0 0 1.\33 :n:3 . yé .

1}

We process it as suggested in the 4 x L case, using now the third

column of U to produce X3 . Repeat as often as necessary.

15
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In the event that the matrices 8“) arc sparse as well as large,
we wish to organize computations additionally in such a way that this
sparseness is preserved as much as possible in the decompositions.

For the initial decomposition (2.2), for example, we would wish to
order the columns of B in guch a way that the production of L( ‘

and U{‘O) introduce as few new nonzero elements as possible. And at

subgequent stages, if there is 8 choice in the vector a(i) which is

to be introduced as & new column into the matrix B(i) to produce B(i+1) P

it may be desirable to make this choice to some extent on sparseness
considerations.

It is not generally practical to demand & minimum growth of nonzero
elements over the entire process of computing the initial decomposition.
However, one can easily demand that, having processed the first k-1

columns according to (1.2) and (1.3), the next column be chosen fram those

* remaining in such a way as to minimize the number of nonzero elements

generated in the next execution of steps (1.2) and (1.3). See, for

example, Tewarson {27] Choice of the next column may also be made

according to various schemes of "merit"; e.g., see Dantzig et al. [6].
The introduction of new nonzero elements during the process of

updating the i-th decomposition to the i1+l-st depends upon
(W™ (1) (1)
(6.3) the nonzero elements in L a over those in & R

and

(6.4) the number Ty of the column to be removed from B(i) .

16

{0) o)yt




(1+1) to U(iu) once

Ho freedom is possible in the reduction of H
a(i) uas been chosen and the corresponding r, has been determined,

The growth (7.2) can be determined according to the techniques
outlined in Tewarson's paper, at a cost for each value of i , however,
wnich is probably unacceptable. The more importent consideration is (4.4},
The larger tie value of T, s the fewer elimination steps vmust be carried
out on H(‘i+l) and the less chance there is for nonzero elements to be
generated. Again, howevasr, the determination of the value of Ty

corresponding to each possible choice of a(i) may prove for most

algorithms to be unreasonadbly expensive.

b alvsictnilih, 4 b Wk i ok
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7. Accuracy Considerations

During the execution cf an exchange alzorithm it sometimes becomes
necessary to ensure the highest possitle accuracy for a solution to one
of the systems (2.1). High accuracy is generally required of the last
solution in {he sequence, and it may be required at other points in the
sequence when components of the solution, or numbers computed from them,
approach critical values. For example, in the simplex method inner
products are taken with the - «ctor of simplex multipliers, obtained by
solving a system involving B(i) s and each of the non-bac‘e vectors.
The computed values are ihen subtracted from eppropriate components of
the cost vector, and the results are compared to zerc. Those which ere
of one sign have importance in determining how the matrix B(i+1) is
to be obteined from B(i) . The value zero, of course, is critical.

The easiest way of ensuring that the computed solution tc a system
(7.1) Bx = v

has high accuracy is by employing the technique of iterative refinement

{9, Chapter 13). According to this technique, if x(O) is any sufficiently
good approximation to the solution of (7.1) (for example, a solution
produced directly via the IU-decomposition of B ) then improvements may

be made by computing

(7.2) r(j) =V - Bx(j)
solving
(7.5) Bz(j) = r(J)

18




and setting

(7. L) (3 4 () ‘ -

for § = 0,1,2,... until !iz('j)!! is sufficiently small. The inner
products necessary to form the residuals (7.2) must be computed in
double-precision arithmetic. If this rule is cbserved, however, and if

the condition of the system, measured as
(7.5) cond(8) = || B 87 ,

is not close to st'l » the refinement process can be counted on to
terminate in & few iterations. The finel vector x(‘j) will then be
as accurate a solution to {7.1) as the significance of the data in B
and v warrant.

Step (7.3) is most economically carried out, of course, via the
same LJ-decomposition which was used to produce x(o) « If this is
done, each repetition of steps (7.2) through (7.%4) will cost only
C'(n2) cperations. The alternative approach of producing & hignly
accurate solution to (7.1) by solving the system entirely in double-

precision arithmetic is generally more expensive than iterative

refinement by a factor of n .




B. THE QR DECOMPOSITION AND QUADRATIC PROGRAMMING

stable algorithms for solving problems involving linear constraints.

b 8, Householder Trisngularization f?
Householder transformations have been widely discussed in the é ‘
literature. In this section we are concerned with their use in reducing ;:
g matrix A to upper-triangular form, and in particular we wish to show ; :
how 10 update the deccmposition of A when its columns ar\e changed one E
by one. This will cpen the way to the implementation of efficient and % ,
1

Householder transformations are symmetric orthogonal matrices of
tre form Pk = 1-pu ui where w is a vector and By = 2/ (uiuk) .
Their utility in this context is due to the fact that for any non-zero
vector a it is possible to choose w in such a way that the
transformed vector Pa is zero except for its first élement.
Householder [15] used this property to construct a sequence of transformations
to reduce & matrix to upper-triangular form. In [29), Wilkinson describes

the proceuss and his error analysis shows it to be very stable.

sl .

Thus if A = (al,...,an) is an mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r) we have

where Rk is an upper-triangular metrix of order k . The next step

(ie+1) = Pk A(k) where P, 1s chosen to reduce the first

is to compute A k




column of T, to zero except for the first component. This component -

k

becomes the last diagonal element of de and since its modulus is

equal to the Euclidean length of the first column of T}, it should in
general be maximized by & suitable interchanuge of the columns of 3

B

i .« After r steps, I, will ve effectively zero (Lhe lenglh

.

ST PNPS

\ Tk /
of each of its columns will be smaller than some tolerance) ard the

O N,

process stops. ]
Hence we conclude that if rank(A) = r then for some permutation

matrix T the Householder decomposition (or "QR decomposition") of A is

I n=r

P~ —
R S '
QAT = P P ees P. A = ;
k-1 " k-2 0 0 0 :

where Q = Pr-l Pr-e_"' Po is an mxm orthogonal matrix end R is
upper-triangular and non-singular.

We are now concerned with the manner in which Q should be stored s
and the means by whieh Q , R , 8 may be updated if the columns of A
are changed. We will suppose that a column ap is deleted from A and
that a column aq is added. It will be clear what is to be done if only

ane or the other takes place.

Compact Method:

Since the Householder transformations Pk are defined by the vectors.

“k the ususl method 1s to Btore the uk's in the aree beneath R , wi:h

a few extra words of memory being used to store the ﬁk's and the diagonal




elements of R . The product Qz for some vector z is then easily

computed in the form Pr- P

1 "r-2
T T

P2 = (I-Bououo)z =z -Bo(uoz)uo.

es follows. The first p-1 columns of the new R are the same as

-++» Fy 2 where, for example,

The updating is best accamplished

before; the other columns p through n are simply overwritten by

columns a,p+1, . ..,an,aq and transformed by the product Pp—l Pp_a eas Po
: S5
to obtain & new p-1 ; then Tp-l is triangularized as usual.
T
p-1

Tnis method allows Q to be kept in product form always, and there is no
accumulation of errors. Of course, if p = 1 the complete decomposition
must be re-done and since with m >n the work is roughly proportional
to {'m-n/B)rx2 this can mean a lot of work. But if p £ n/2 on the
average, then only sbout 1/8 of the original work must be repeated

each updating.

Explicit Method:

The methnod just given is probably best when m >>n . Otherwise
e

we propose that @ should be stored explicitly and that the updating

be performed as follows:

(1) The initiel Q can be computed by transforming the identity

matrix thus:

| R S |
P P 'R R P (AF I ) = Q .
r-1 "re2 0 m 0 o

22




(&) 1r aq is added to A then compute sq = Qaq and add it
to the end of (g) .

(3) Delete ap where applicable (p <r) . This normally means
Just updating the permutetion vector used to describe T .

(4) The initial situation

QAT = @;

—--7--
GERO)

has thus been changed to

( where the areas @ s @ ’ @ » @ are the same as before.




This ie analogous to the Hessenberg form encountered in
updating IU decompositions. We now employ a segquence of
(r-p) plane rotations, as used by Givens and analyzed
ty Wilkinson [30], to reduce the subdiagonal of area (3)
to zero. This changes aress @ ’ @ and @ » and the

- gorresponding rows of Q must alsc be transformed. Since
the plane rotations are elementary orthogonal transformations,
the latter step produces a new matrix Q* which is also
orthogonal, and the work necessary is approximately proportional

to 2mn+n2 .

{5) Finally, a single Householder transformation Pr is applied
to produce Q= PrQ* , where this transformation is the one
which reduces area @ to zeros except for the first

element. The work invelved is proportional to 2(m-n)m .

Thus the transformation § reduces AT to a new upper-triangular

form, and the original trensformetions Po, ’Pr-l » the plane rotations,
and the final Householder transformation may all be discarded since the
required information is all stored in § . The total work involved is

rougily proportional tc (2mn+ ne) +2(m-n)m = on® + n2

and the stability
of the orthogonal transformations is such that accumilation of rounding

errors during répeated applications of the updating process should be

very slight.




9. Projections

In optimization problems involving linear constraints it is often
necessary to compute the projections of some vector either into or
orthogonal to the space defined by a subset of the constraints (usually
the current "basis"). In this section we show how Householder
transformations may be used to compute such projections. As we have
shown, it is possible to update the Householder decomposition of a
natrix when the number of columns in the matrix is changed, and thus
we will have an efficient and stable means of orthogonalizing vectors
with respect to basis sets whose component vectors are changing one by
one.

Let the basis set of vectors 8,58, 008y form the columns of
an mxn matrix A, and let S, be the sub-space spanned by {a,i} .
We ghall assume that the first r vectors are linearly independeﬁt
and that rank(A) =r . In gerieral, m >n >r, although the following
is true even if m<n .

Uiven an arbitrary vector z we wish to compute the projections
u=bz , v=(I-P)z

for some projection matrix P , such that

(a) Z = u+v

(b) uv = 0

(e) ues,. (i.e., 8x such that Ax = u)

() v is orthogonal to §, {1i.e., Alv = 0) .
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One method is to write P as A.l\+ where A' is the nxm generalized
inverse of A, and in [ 7 ] Fletcher shows how A may be updated
upon changes of basis. In contrast, the method based on Hauséholder
transformations does not deal with A’ explicitly but instead keeps
AAT in factorized form and simply updates the orthogonal matrix reguired
to produce this form. Apart from being more stable and just a8 efficient,
the method has the added advantage that there are alwiys two orthonormal
sets of vectors available, one spanning Sr and the other spanning its
complement .

As already shown, we can construct an mxn orthogonal matrix Q

such that

r n-r
QA =
0 O

where R is an rxr upper-triarjular matrix. Let

(wl r
W } mer

(9.1) w o= Q2 =
\ 2
and define
. 0
(9.2) u = QT( 1) , v=a (,.-) ~
0 2

Then it is easily verified that u,v are the required projections of = ,

which 1s to say they satisfy the above four properties. Also, the x in
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(e¢) 1s readily shown to he

in effect, we are representing the prolection mairices in the form

P
(9.3) Po- oo Tl on
0
and
[ %},
(9:1) LAY DN St
m-r

and we are computing uw = Pz , v = (I-P)z by means of (9.1), (9.2).
The first r columns of Q span sr and the remaining me-r span
its complement. Since Q@ and R may be updated accurately and
efficiently if they are camputed using Householder transformations, we
heve as claimed the means of orthogonalizins vectors with respect to
varying bases.

As an example of the use of the projection (9.%), consider the
problen of finding the stationary values of xTAx subject to xTx = 1
and CTx = 0, vhere A is & real symetric matrix of order n and C

is an nxp matrix of rank r , with r <p <n . It is shown in {12}

that if the usual Householder decomposition of C is

ner

.
s
0

€ =

b
-
B
0




then the problem is equivalent to that of finding the eigenvalues and

eigenvectors of the matrix i"A » Where

o 0
%.1.pgq'r( Q
OIn-r

is the projection matrix in (9.k). It can then be shown that if

. 63 Gy
QAQ" = .
Gp G

where GJJ. is rxr , then the eigenvalues of PA are the same as
those of 622 and eo the eigensystem has effectively been deflated

by the number of independent linear constraints. Similar transformations
can be applied if the quadratic constraint is xTBx =1 for some real

positive definite matrix B .




2. Drthoconalization witi Resvecot 45 jositiv o
WM . ' H . . . » 4 v
Pleteser alse shows o . | Low to wpdate prodetion matrices when
Lois requdred o owsethoponalize with respeet to a ~iven positice
definiie matriz oL Ue mow show aow Lo compute such proicctions usin
nouserolder ranstovmationg, and hecee the corments made in 4he lact
featiuy eoncerrie.s olancee o0 sasle LAy alse be applied bove.
Slewr anoarpiirar vectar = it is requived te flad v - Pa,
T P)L o sowe P, cuch fhot
D= Ut
T
5 JR Vis (o
{e)  dx sush tesl Ax = u
N
Q) (e - 0.
for simplicily we will assume that rankih) - n . Thuen, ratier than
computing F  explicitly as Fletcner does according to
U VRS Ry
P = KA -5\) b T »
we obtain thiz Cholesky decomposition of T thus:
T
=1L
where I is lrwer-triangular and non-siagular if D is positive
T
definite. We then compute B = L°A and obtain the decomposition
. R
&B = (o .




Defining

. v,\ In
w = QL'z =
vyl Ymen
and
W 0
u = L-TQT l} , v = L-TQT
0 J v

it is easily verified thet u,v are the required projectioms, and
again the x in (c) is given by x = R'lwl . Since changing a column

a, of A is equivalent to changing the colum LTa. of B, the

k k
metrices Q and R may be updeted almost as simply as before.
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11. Linear Leest Squares and {uadratic Programming

We first consider minimization of quadratic forms sub:ject to
linear equality constraints. The solution is siven by a single systenm
ct' equations and the alzoritiu: we deseribe rfor solving thais systern will
serve as a basic tcol for solving protlems with inequality constraints.

t will also provide an exemple of Low solutions to even strongly

bos

ill-cenditioned problems may be obtained accurately if orthogonalization
teciniques are used.

Let A, %e given matrices of orders mxn ; prn respeetively
and let b,t be given vectors of consistent dimension. The lecast

sguares prcblem to be considered hiere is
Problem I1S: min b - A,
subject to Gx =h .

Similarly, let D be & given positive semi-definite matrix and c
a given n-dimensional vector. The guadratie programming problen

corresponding to the above is

Problem QF: min % TDx +e'x

subject to Gx =h .

Now we can cbtaln very accurately the following Cholesky decomposition

of D
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where we deliberately use A again to represent the triarigulsr factor.
If D is semi-definite, a symmetric permutation of rows and columns
will generally be required. If D is actually positive definite then
A will be a non-singular trianguler matrix.

With the above notation, it can be shown that the solutions of both

problems satisfy the system

G z h
(11.1) I A r = b
GT AT X ¢

where

o
n
o

-
L]
"

b - Ax for Problem 1S,

b=0 , r=-Ax for Problem QP,

and z is the vector of Lagrange multipliers. In [ 2], [ 3] methods
for solving such systems have been studied in depth. The method we
give here is similar but more suited to our purpose. This method has
been worked on independently by Leringe and Wedin [17]. The solution
of (i1.1) is not unique if the guantity ra.nk(i) is less than n ,
but in such cases we shall be content with obtaining one solution rather

than many. The important steps follow.

(1) ZLet Q, be the orthogonal matrix which reduces ot to triangular

form, and let Ql also be applied to AT s thus:

R, | s
(12.2) @Al - * :

T




PR A S

As explained earlier, Ql can ve constructed as a sequence of
Householder transformations, and the columns of (;1 should be

rermuted during the triansularization. This allows any redundant

constraints in ux = h to ve detected and discarded.
“y . n . . . . T
(2} Let G, be the orthoronal matrix whicn vreduces 17 to triargular
form:
T R3
(11.3) QI - .
“ 0

Here we assume for simplicity that T is of full rank, which is
equivalent to assuming that (11.1) nas & unique sclution, and

again we suppress permutations fram the notation.

(3) The combined effect of these decompcsitions is now best regarded
as the application of an orthogonel similarity transformation to i

system (11.1), since the latter is clearly equivalent to

I G I Z b
Q I A ol ar | = | an |
2 2 2 2 . %
T T T
B\ A 4/ \ % e

The resulting system consists of various triangular sub-systems i

involving Rl 3 Ra » S , and can easily be solved.

(4) If desired, the solution thus cbtained can be improved upon vie

the method of iterative refinement [ g ], since this just invelves i
the solution of system (13.1) with different right-hand sides, and

the pecessary decompositions are already available.
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The algorithm just described has been tested on extremely ill-conditioned

systems involving inverse Hilbert matrices of high order and with iterative

refinement has given solutions which are aceurate to full machine precision.
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2o Positive Definite Procrammins

With the algorithm of the previous secticn available, we are now

prepared to attack the following mere gencral projramming problems:

Problen 1LS: min b - Ax”,e

subject to

Problem QP: min % xTDx + ch

sublect to the same contraints.

Let Gl’G2 be of orders PyXn, Pyxn respectively, and again suppose
that D has the Cholesky decomposition ATA « In this section we

A
consider problems for which rank( G ) = n (which is most likely
1

to be true with least squares problems, though less likely in QP ).

In such cases the quadratic form is essentially invertible (but we
emphasize that ite inverse is not computed) and so x can be eliminated
from the problem. With the notation of the preceding section the steps

are as follows:

(1) Solve {1l.1) with G to get the sclution x = x. , then campute

vh

the vector g = Gexo -h2 .

0

(2) If q >0 then =x. is the solution.

0
Otherwige, transform the inequality matrix using Q from step (1),

80 that

R, | 8|U \1p
T, T [T 1

v } n'pl
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v [ R T
(3) If QT as before ard if M =R, V' it can be shown that
0
the active constraints are determined by the following linear

complementarity problem (ICP):

w-q+MTMz

(12.1)
W,z >0 , sz=O .

v,z are respectively the slack varisbles é.nd Lagrange muitipliers

associated with the inequality constraints.
(4) The active constraints (for which wy

the ICP) are now added to the equalities Glx = hl and the final

= 0 in the solution of

solution is obtained from (11.1l).

We wish to focus attention on the method by which the ICP (12.1) is
solved. Cottle and Dantzig's principal pivoting method { 5] could be
applied in & straightforward manner i1f MM were computed explicitly,
but for numerical reasons and because MM (p,xDp,) could be very
large, we avoid this. Rather we take advantage of the fact that no more
then n -pl inequalities can be active at any one time and work with a
basis Ml made up of k columns of M, where 1<k Sn-pl . The QR

decomposition

o -(3)

is maintained for each basis as columns of M are added to or deleted

from My and es we know, Q and R can be updated very quickly each
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change. Then just as in the LU methiod ror linear programming, the new
basic solution is obtained not ty updating a simplex tableau but simply
by solving the appropriate syciom of equatians using the available
decomposition.

As an example we show how canplementary basic solutions may be
sotained. Let the basis :-:l contain k columns of K and let ;‘-:2

be the remaining (non-basic) columns. The system to be solved is

T
c a; MMy
= + Z

Ui
w‘d q_2 Mel o

with obvious notation. If we define y = -M‘]_zB this is best written as

(12.2)

"

-3

M

—

(12.3) Wy =aq, - ng

and the solution of (12.2) is readily cbtained from

ullk
weRTy oz Eu "’QT( )} '
o} n=p,~k
1

The blocking variable when a non-basic variable is increased can be
found from the solution of the same set of equations with the appropriate

right-hend side. It is worth noting that the equations can be simplified

37

P O P PO I




if the basis is square (i.e., if there are as many constraints active
as there are free variables). Since it seems very common for ‘the basis
to £ill up during the iterations (even if the final solution does not
have a full set of constraints) it is worth treating a full basis
specially.

Almost-camplementary solutions can be obtained in similar fashion
(with somewhat more work required as the system is then not quite 80
symmetric). Thus an algoritim such as Cottle and Dantzig's can be
implemented using these techniques, and convergence is thereby guaranteed.

Of speclal interest, however, is the following unpublished and
apparently novel idea due to Yonathan Bard, with whose permission we
report the resultse he has obtained. AJmost-canplanenfary bases are
never alloved to occur; instead, if a basic variable is negative,

then it is replaced by its complement regardless of the effect cn the

other basic variables. Bard has tried this method (carried to convergence)

on hundreds of problems of the form w = q+Mz and cyecling has never
occurred when the most negative element of q is chosen. In a series
of tests on 100 rendom matrices of orders between 2 and 20,
principal pivoting required a total of 537 pivots whereas the
Cottle-Dantzig algorithm required 689 .

The present authors' experience with fewer but larger provlems
confirms the above observation that convergence does actually oceur and
usually after a small number of iterations., Since the idea eliminates
all work other than computaiion of complementary solutions it is

partioalarly suited to the techniques of this section. At worst it should
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be used as a sterting procedure to find 4 close-to-optimal basis quickly, | .
and at best if the conjecture can be proven that it will always converge, |
then u lot of computer time could be saved in the future.

[It has since been learned that Bard applied the principal-pivoting
rule to LOP's of the somewnat special form in which

MePP, qu P

for some P, p. Problems of this form have been studied by Zoutendijk
in [31,32] where severul pivot selection rules are discussed. Finite-
ness is proven for one rule, but simpler methods (such ss Bard's) are
reczommended in practice for efficiency.

The question of finiteness for the more genmeral ICP remsins open,
and it is likely that somewhat more sophisticated rules (e.g., Cottle

and Dantzig) will be required.
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13. Semi-Definite Programming
We nov consider the more general problem in which the rapk of the
quadratic form combined with the equality constraints may be less than n .

The method we propose is conceptually as simple as it is stable. It is

analogous to the revised simplex method for linear progreamming in that

the essential steps to be implemented are as follows:

(1) Find the current basic solution from a certain system of equations
for which a decomposition is available.

(2) Determine according to a certain set of rules what modifications
should be made to the system to cbtain g new basis.

(3) If necessary, update the decomposition and return to step (1).

Thus, suppose that the current basis contains GBx = h]3 as active

constraints. As in (11.1) the corresponding basic solution is then

; given by
?
G\ | % Iy
(13.1) I A r = b
T T
GB A X ¢
and
(13.2) Wg = hp - Gpx .
(Here, §Bx > ﬁB are the currently inactive constraints, vy the

corresponding slack variables, and zg the lagrange multipliers or dual

B

l ) variables associated with the active constraints.) The elements of z




corresponding Lo any equadlity caistraints may be eiticr positive or v
negative and need never be ldoked at. Ignorin: tuese, the vasic solution

above is optimal if and only i¢

ZBBO and w, >0,

w
|

A "QP algoritihm” is now to0 be resarded as the "certain set of rules"

o - N S - 7oy * e " a3 ~d 3 . s ST -
mentioned ia step () wherevy =z ,w, and poscibtly other information are

used to determine wiich constraints suould be added to or drojped from !'""B .
The efficiency of the method will depend on the speed with which this
decision ¢ be made and on tre erficiency witi: which the decomposivion
of {13.1) can be updated.

Once again the most promising pivot-selection rule is thrat of Rard,
as discussed in the previous section. The general idea in this context
is as folliows:

(&) Find 2, = min Wi %= min z, from those eligible

elements of Wp» Zg -

(v) If W, <0, constraint @ could be added.

(¢) 1If < 0, constraint B could be dropped.

z
B
(., If there sre already n constraints active and w, < 0,

corstraint Q could replace constraint g .

We do not cons!der here the gquestion of convergence, but as already stated,
this type of rule has been found to work.

The problen of updating the requisite decompositions is more relevant

et present. We discuss this and other points briefly.




(1) The matrices Ql,Rl ° Equation (11.2) can be updated efficiently

(2)

(L)

(5)

using the methods of ‘ection B.
QsR, obtained from the metrix T in Equation (11.3) unfortunately

cannot Te updeted, tul the work needed to recompute them might often

be very small, for the following reasons:

{a; 1n Problem L8, & preliminary triang:larization of A (mxn)

can be applied to obtain an equivalent problem for which m <n .

The Cholesky factor of D in Problem QP salready has this property.

(t) 1f there are many constraints active (up to n) then T has
very few rows.
(¢) 1If the rank of the system is low (relative to n) then T

has very few columns.

Hence the method is very efficient if close to n constraints are
active each iteration, as should often be the case. It also has the
property, .long with Beale's algorithm [1], of being most efficient
for problems or low rank.

The procedure can be initiated with any specified set of constraints
in the first basis, and an initiel estimate of x is not required.
Any number of constraints can be handled, in the same way that the
revised simplex method can deal with any number of variables.

If D =0 the problem is a linear program and only bases containing
n constraints need be considered. The method reduces to something

like a self-dual simplex algorithm.
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Finally we note that with saui-definile probless il is possiule

for some basic system {(17.1) %o be sinler. 3 %Lere are any solutions

at all then there are rany {(this will alwn, s Le ihe 2ase with: low rank

least squares problems) but Liuis doer not matter, since iy iz =till

uniquely determined. ‘However, a low rank quasratic prozran might be

unbounded, and this is manifested i a singular syster (12.1) proving

Just meuns trat there arce not yet

1o Ve inconsistent.

enough constraintis in the basir, so tha!l trouble can usually be avoided

oy initializing tiie procedure wit: a ull set of constraints.
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C. THE 3VD AND NONLINEAR LEAST SQUARES

1. The Singuiar vValue Decomposition

let A Le a rcoal, mxzn metrix (for notational convenience we

assume that w > n) . Tt is well known (¢f. [ 1) that
{14.1) AostEt

wiere U,V are crilcgenal matrices and

--~“-—

O } (m-n) x n

' ocnsists of tire erthoncrmalized elgenvectors of AAT, and

7 consists of the orthonormalized eigenvectors of ATA « The

éilaconal elements of £ are the non-negative square roots of the

eigenvalues of ATA 5 they are called singular values or principal values

of A . We assume

> 00 > o .
°p 292 20,2

Thus if rank{A) =r , Optl = Oppp = *++ =0, = 0 . The decamposition

(14.1) is called the singular value decomposition (SVD).
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An nxm matrix X is said to be tiie pseudo-inverse of an mxn

matrix A if X satisfies the following four properties: .

(1) AL =4 , (i) xwx-x , (1) T -xa ,  (1v) wof = x .

Ve denote the pseudo-inverse by At It can be shown that A+ can
slways be determined and is unique {cf. [21]). It is easy to verify

+ m
that A =VAUL where A 1is the nxm matrix

L= diag[cil,g;l, . ..,c;l,o,o, .++,0} . There are many applications of

tre SVD in least squares problems {cf. [1l]).
The SVD of an arbitrary matrix is calculated in the following way.
Firat, a sequence of iHouceholder transformations {Pk}gzl , [Qk}ii

is constructed =0 that

= T - ‘
PP 4P AQQy. 0 =P AQ =T

and J is an mxn bi-diagonal matrix of the form

an_
O } (m-n) xn .

The singular velues of J are the same as those of A .
Next the SVD of J i1s computed by an algoritim given in [11]. The ' .

algorithm 1s based on the highly effective QR algorithm of Francis [10] for

computing eigenvalues. If the SVD of J = XEY' then A = PXEY QX 8o

th&t U=E(, V=QY-

L5




15. Nonlinear Least Squares

Consider the nonlinear transformetion F(x) = y where . XeE

and yr_Em with n <m . We wish to consider the following problem:

min b - F(x)]|,

subject to
{15.1) Gx =h

where G is & pxn matrix of rank p and heEP . A very effective
alporithm for solving such problems is a variant of the Levenberg-Marguardt
algorithm [18,19]; in this section we consider some of the details of the
numerical calculation. Further extensions of the algorithm are given
ty Shanno [25] and Meyer [20].

Let us assume thal we have an approximation x(o) which satisfies
the relation Gx(o) =h . Then at each stage of the iteration we

determine 5% g0 that

(15.2) L) (%), 5(K)
and
(15.3) ™ _o .

R
0

of p Householder transformations and R is an upper trisngular matrix.

Azain &8 in Section 11, we write QlGT =( ) where Ql is the product

Let

(k)
(15.4) a.s(® . : be .

n(k) } n-p

L6
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5(k) 0 .

Then from (15.3), we see that

For notational convenience, let us druap ithe superscript k 3

k) (k+1)
X as X, .
1

we write x( as x, end

In the Levenberg-Marquardt algsoritlm cne Jeterminevs the vecstor &

50 that

! . 2 -
{15.5) Fr-geliy + 218 1% = min.

r=Y-F(xy) ,

J is the Jacobian evaluated at xo s and )\ is an arbitrary non-negative

perameter. From (15.4), we see that (15.5) is equivalent to determining 1

so that

i A 2 2L
(15.6) e -aa (3 ), « A0l el + Bl )= man.

subject to £ =0 .

[M,N] where N consists of the last ne-p

n

Now let us write JQE
columns of J‘Qi . Then (15.6) is equivalent to finding 17 &o that

2 2
¢(M = |r-mwl, + xfinfl; = min.
Consider the SVD of N ; namely

N=ULW .

Then




i

(5.1 sy = sVl + Al

2 2
he -z gll, + all el

where

s=UTr ’ g=vTT] .

Writing out (15.7) explicitly, we have

2,, F 42
H0) = £y - atp® I, ¢

where p is the rank of N . (Note p may change from iteration to

iteration.) Then

8(L) = min
when
szc.
E = for ,j = l,2,--v,p » :
J 2 3
Mt o,
J
= 0 for ;]>p
[
and hence '
S.o.
1 = ....J_JE_ vy
= x+crj .

where Vj is the j-th column of V . Thus




() |

Note it is an easy matter to compute T (and hence &) for various
values of )\ . The algoritim for canputing the SVD can easily be
organized so that s 1is computed directiy ([ 11]).

There are several possible strategies for determining ) . One

possibility is to choose i so that
o -Fl W, < Ho-Flx N, -

This requires, of course, the evaluation of F(x) at a great many points.

Another poseibility is to choose & such that

“r-J&”e = min.
(15.8)

subject to 1K) H2 <a .

This is equivalent to determining )\ such that

2
2 [=] 8.0.
i, = (&) < .
J=1 k*oj

When ) = 0, we have the golution to the unconstrained problem and

Let | ll, =B . If B <&, then we have the solution to (15.8).

Otherwise, we must determine 3 80 that ’




8.0
(15.9) i ——‘L-JE = a2 .
J= Mto
hj
Let
o151
= % -
272
- 2 2 2
us=0a 1 . ) 1 = diag(ﬁlsae) "‘!c'p) H
chp

we assume 5, £0 for j=1,2,...5p . By repeated use cf the

relstionship

det(’z‘ YY) - aet(n) aet(-zx™l)  ir aet(x) £ o

we can show that (15.9) is equivalent to
- 2 T
(15.10) det((Q + AI)° = wu") = 0

which has 2p roots; it can be shown that we need the largest real

*
root, which ve denote by A ([8]). Let

2

5.¢

r(x)=ﬁi—u§ - of

=, K'Po

J
and assume thst qigogg...ga§>o. Note T(0) =8 -d® >0,

*

and I'(h)-'-ae as ) —+® , sothat 0L\ <= and it is the only

root in that interval. We seek & more precise upper bound for x*.




From (15.10) we see, using a Rayleizh quotient argument, that

-~ "™ "o
A < max [=yTQy ¢ \/E’LQI«’) -y - ‘mT,‘I/ I

N o ow b L 2
(l;'.ll) 0« « \/o' - UO + WU - GD .

Tius, we wigh to find & root of (15.10) which lies in the interval
given by (15.11), HNute that the determinantel equation (15.10)

involves a diagonal matrix plus & matrix of rank one. In the next

section we shall describe an algoritim for solving such problems.
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16. Modified Eigensystems

As was pointed out in Section 15, it is sometimes desirable to
determine some eigenvalues of a diagonal matrix which is modified by
a matrix of rank one. Alsc, Powell {23] has recently propoged s
minimization algorithm which requires the eigensystem of a matrix after
a rank one modification. In this section, we give an algorithm for
determining in 0(n2) uumerical operations some or all of the eigenvalues
and eigenvectors of D+¢7uuT where D = diag(di) is a diagonal metrix

of order n and ueEn .

Let C =D+ cruuT ; we denote the eigenveluesof C by Al’)‘Q""’;‘n

and we essume ), >1,,., and d;, >d,., . It can be shown (cf. [30]}

that

(l) If 02 0 ) dl+O'uTu2 klzdl 3 di_lzlizdi (i = 2,1.-,“) ’

(2) If 5<0, & > >4, (i=12..00), 4 23 >4 +ouu.

Thus we have precise bounds on each of the eigenvalues of the modified

natrix.

Let X be a bi-diagonal matrix of the fom

L O
1 .
K= .
O e
1

2




and let M = diag(ui) . Then

. (b3 *uprT) KoTy O :
! - Y koly . )

. . .
(16.1) KK = r (botn, . .22) r
Bkl ‘Fx Pre1'x Prel'k
[ ] - »
L ] '] L]
' . ] " r
P O n"n-1
k unrn--l “n

is & syrmetric, tri-diagonal matrix.

Consider the matrix eguation
(16.2) (o+ auuT)x =X .
Multiplying (16.2) on the left by X , we have

K(D + oD ) KK Tx = A KKK Tx *

(16.3) (KDKT+aKuuTKT)y = xchy

where x = KTy « Let us assume that we have re-ordered the elements of u

80 that

ul'\la-on- zzup_l=0 and 0<lupl5|up+l|5---$|un| .

i
‘
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Now it is possible to determine the elements of K so that

0
0
(16.4) k=] : .
0
u
n
Specifically,
I’i = 0 (i = 1,2,.'-,p—1) »
ri = -ui/ui“"l ’ (1 =pyptl,..pm)

and we note that |r;| <1 . (This device of using a bi-diagonal matrix
for annihilating n-1 elements of a vector has bheen used by Bjbrck
and Pereyra [ 4 ] for inverting Vandermonde matrices.) Therefore, if Ku

satisfies (16.4), we see from (16.1) that KDK' + gKuu®

KT is a
tri-diagonal matrix and similerly Klg is & tri-diagonal matrix. Thus

we have a problem of the form
Ay = ABy

where A and B are symmetric, tri-diagonal matrices and B is positive
definite.
In [22], Peters and Wilkinson show how linear interpclation may
be used effectively for computing the eigenvelues for such metrices
vwhen the eigenvalues are isolated. The algorithm makea use of the value

of det(A<AB) . When A and B are tri-diagonal, it is very simple

sh




to evaluste det(A -)B) for arbitrary A . Once the eigenvalues are
computed it is easy to compute the eigenvectors by inverse iteration.
In Section 15, we showed it was necessary to compute a parameter

)\* which satisfied the equation
(1€.5) det((Q + )\I)E -ua”) =0

Again we can determine K so that Ku satisfies (16.4) and hence (16.5)

is equivalent to
(16.6) det (K(Q + AI)°K' - Ku'K) = 0 .

The matrix G(A) = K(Q + AI)°K® - Kuw'K® is tri-diagonsl so that it is
easy to evaluate G{)) and det G(A) . Since we have an upper and
lower bound on A , it is possible to use linear interpolstion to
find >\* » even though G(A) is quadratic-in ) . Numerical experiments
have indicated it is best to compute G(X) = K(Q + AT)ZKT - Kuulk®
for each approximate value of ).* rather than computing
a(n) = (XK - kuwa"KD) + 22 KQKT + 22K .

The device of changing modified eigensystems to tri-diagonal
matrices and then using lirear interpolation for finding the roots can

be extended to matrices of the form

Again we choose K so that Ku satisfies (16.4) and thus obtain the

eigenvalue problem Ay = ABy where

55




kDK | ku

so that A and B are both tri-diegonal and B is positive definite.
Bounds for the eigenvalues of C can easily be esgtablished in terms of
the eigenvalues of D and hence the linear interpolation algoritm

mey be used for determining the eigenvelues of C .
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